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Abstract. The dielectric function and the density–density correlation function are calculated
for a compositional superlattice of type II, which consists of alternate electron and hole layers (a
two-component plasma) in an inhomogeneous dielectric background. The dielectric background
of the electron gas is considered to be different from that of holes and the finite width of an
electron (hole) layer is considered to allow both intrasubband and intersubband transitions. Our
model superlattice consists of electron plasma, hole plasma, lattice vibrations of the background
of the electron gas and lattice vibrations of the background of the hole gas. Electron–electron,
electron–hole, hole–hole, electron–phonon, hole–phonon and phonon–phonon interactions take
place in our model superlattice. Our calculation is applied to the In1−xGaxAs/GaSb1−yAsy
superlattice. Variation of plasmon–phonon coupled modes and their lineshapes with (x, y) and
unit cell width has been investigated in order to study the effects of semiconductor to semimetal
or vice versa phase transitions. It is found that phase transition prominently affects the plasmon
modes, while phonon modes remain almost unaffected. The inhomogeneity in the background
of the electron–hole gas also produces a significant change in plasma frequencies. Lineshapes
of coupled plasmon–phonon modes for both semimetal and semiconductor phases are calculated
and are computed with those of the homogeneous background. Significant changes in peak
height and half width are observed due to inhomogeneity in the dielectric background and the
semiconductor to semimetal phase transition.

1. Introduction

There has been immense interest in type-II superlattices because of an extraordinary band
edge relationship at the interface and the co-existence of electron and hole gases [1–6].
The best known example of a type-II superlattice is (InAs)1−x(GaAs)x /(GaSb)1−y(GaAs)y .
At the misaligned bandgap InAs/GaSb superlattice interface, electrons flood from the GaSb
valence band to the InAs conduction band, leaving holes behind, and the process produces a
dipole layer consisting of two-dimensional electron and hole gases. The calculated subband
structure shows a strong dependence on the period of the superlattice (d) [7, 8]. The energy
gap decreases with increasingd and the semiconductor to semimetal transition takes place
at d ∼= 170 Å. The electron concentration has been measured as a function of InAs layer
thickness and a sudden increase of an order of magnitude has been observed for layer
thickness∼= 100 Å [9]. Such an increase indicates the onset of electron transfer from GaSb
to InAs. Far-infrared magneto-absorption experiments confirm a negative energy gap which
suggests a semimetallic superlattice [10, 11]. The existence of a semiconductor to semimetal
transition, which results in electron transfer from the GaSb layer to the InAs layer, when
the InAs quantum well thickness reaches a threshold, was confirmed experimentally and
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theoretically [12, 13]. The electron mobility for InAs quantum well thickness from 150
to 200 Å ranges between 1.5 and 2.0× 105 cm2 V−1 s−1 at 4.2 K [14]. The conduction
band minimum of InAs exists below the valence band maximum of GaSb, which yields
the transfer of electrons from a GaSb layer to an InAs layer. The process results in a
system where electrons and holes are mostly confined to adjacent layers. Therefore a type-II
superlattice can be considered as a one-dimensional (1D) periodic array of electron and hole
layers embedded in a dielectric medium which offers two different backgrounds for electrons
and holes. The aim of this paper is to perform a theoretical study of electronic as well as
ionic collective excitations and light scattering for a type-II superlattice, in order to see
how the inhomogeneity in the background of the electron (hole) gas and the semiconductor
to semimetal phase transition affect these properties. There have been a large number of
experimental as well as theoretical studies on collective excitations and light scattering in
semiconductor superlattices [5, 15–34], ever since the discovery of superlattices, because
of their central importance in analysing and understanding several technological aspects of
superlattices. The intrasubband plasma frequencies for a model type-II superlattice of 2D
electron and hole layers has been calculated by Das Sarma and Quinn [32]. However, their
work did not consider the finite width of an electron/hole layer and the inhomogeneity in the
background. The work was then extended by Tselis and Quinn [17] by assigning finite width
to electron (hole) layers in a homogeneous dielectric background. The theoretical study of
intrasubband plasmons in a two-component system in a homogeneous background with the
possibility of tunnelling between layers of zero width has also been performed [33]. Tzoar
and Zhang [25] have performed a theoretical study on the Raman scattering cross section
for a system of strictly 2D layers of electrons and holes in a homogeneous background.
We present, in this paper, a calculation of plasmons and plasmon–phonon coupled modes
and the line shapes of plasmon–phonon coupled modes for the Gax In1−xAs/GaAsySb1−y
superlattice. The superlattice has been modelled as a 1D sequence of electron (hole)
layers which are embedded alternately in an inhomogeneous dielectric host medium. The
lattice which consists of electrons is different from that containing holes, in a unit cell.
Therefore, our model structure consists of four components, viz. electron plasma, hole
plasma, phonons belonging to the lattice of Gax In1−yAs and the phonons of the GaAsySb1−y
lattice. Also, we assign a finite width to an electron layer and a hole layer in order to
take into account both intrasubband as well as intersubband plasmons. Our calculations
incorporate electron–electron, hole–hole, electron–hole, electron–phonon, hole–phonon and
phonon–phonon interactions for both intrasubband and intersubband transitions. Ours is
a much more detailed and accurate calculation of plasmon–phonon modes and their line
shapes for a type-II superlattice as compared with those reported in the past [17, 19, 25].
Further, we study the variation of plasma frequencies and their line shapes with (x, y) and
with d, in order to see the changes in plasma frequencies for the semimetal to semiconductor
or vice versa phase transition. The frequencies and line shapes have also been computed
by considering a homogeneous background for the electron/hole gas to compare them with
our calculated results. We present our calculations of collective excitations in section 2.
The calculation and results on line shapes of coupled plasmon–phonon modes are given in
section 3. We summarize our work in section 4.

2. Frequencies of collective excitations

The In1−xGaxAs/GaSb1−yAsy superlattice consists of electrons in In1−xGaxAs layers and
holes in GaSb1−yAsy layers. The superlattice offers a two-component plasma in an
inhomogeneous background. The electron and hole plasmas interact with each other in
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addition to their interaction with lattice vibrations of In1−xGaxAs and GaSb1−yAsy . The
frequencies of plasma oscillations and the plasmon-phonon coupled modes can be given
by the zeros of the dielectric function of the system. A general expression for collective
excitations in a type-II superlattice can be given by [33]∣∣∣∣ ελ11 ελ12

ελ21 ελ22

∣∣∣∣ = 0. (1)

The suffix 1 corresponds to the In1−xGaxAs layer while 2 corresponds to the GaSb1−yAsy
layer of a unit cell.λ represents a composite subband index. Theελii terms yield intralayer
interactions, whileελij terms give interlayer interactions.ελij can be expressed as follows
[34]:

ελij = δij − VqP λii (q, ω)T λij
(
q, kz

)
(2)

whereT λij is the structure factor which takes care of periodic structure along thez-axis. Pλii
is the total polarizability (sum of electronic and ionic parts) of a layer andVq = 2πe2/q is
the 2D bare Coulomb interaction. We considerλ = 0 (intrasubband transitions) andλ = 1
(intersubband 0→ 1 transitions) for our calculation.

2.1. Intrasubband plasmons

The electronic part of polarizability involves both intrasubband and intersubband transitions.
However, energies involved in intrasubband transitions are many times smaller than those
involved in intersubband transitions. For example, energies involved in intrasubband
transitions are smaller than 20 meV, whereas the intersubband energy gap between the
ground subband and the first excited subband is of the order of 100 meV for the InAs
layer. Therefore, the coupling between intrasubband plasmons and intersubband plasmons
is weak and it can be neglected. After neglecting the coupling between intrasubband and
intersubband transitions, (1) can be simplified for intrasubband plasmons:∣∣ε0
(
q, ω, kz

)∣∣ = {1+ α0
(
P 0

1e + P1i

)}{
1+ β0

(
P 0

2h + P2i

)}
−γ 0

(
P 0

2h + P2i

)(
P 0

1e + P1i

)
= 0 (3)

whereq andkz are the components of wave vector along and perpendicular to an electron
(hole) layer. The polarizabilitiesP 0

1e andP 0
2h are defined as

P 0
1e(q, ω) =

−nseq2

ε1∞m∗1[ 1
2q

2v2
f e − ω(ω + iγe)]

(4)

P 0
2h(q, ω) = −

nshq
2

ε2∞m∗2[ 1
2q

2v2
f h − ω(ω + iγh)]

. (5)

nse andnsh are the number of electrons and number of holes per unit area, respectively.
vf e (vfh) andm∗1 (m∗2) are Fermi velocity and the effective mass in layer one (two) of a unit
cell, respectively.ε1∞ andε2∞ are the optic dielectric constants of layers 1 and 2 of a unit
cell. P1i andP2i are given by

P1i (q, ω) = −q2(ω2
L1− ω2

T 1)

(ω2
T 1− ω(ω + iγph))

(
d1

4πe2

)
(6)

P2i (q, ω) = −q2(ω2
L2− ω2

T 2)

(ω2
T 2− ω(ω + iγph))

(
d2

4πe2

)
(7)
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whered1 andd2 are thicknesses of layers 1 and 2 of a unit cell.ωL2 (ωL2) andωT 1 (ωT 2) are
the longitudinal and transverse optical phonon frequencies of a In1−xGaxAs (GaSb1−yAsy)
layer, respectively. γe, γh and γph are the damping constants for the electron plasma,
hole plasma and phonons, respectively. For calculation of coupled modes of plasmons and
phonons, we takeγe = γh = γph = 0. α0(q, kz), β0(q, kz) and γ 0(p, kz) are defined as
follows:

α0
(
q, kz

) = −(2πe2

q

){
H 0

11(q)− F 0
11(q)

[
1− S(q, kz)]} (8)

β0
(
q, kz

) = −(2πe2

q

){
H 0

22(q)− F 0
22(q)

[
1− S(q, kz)]} (9)

γ 0
(
q, kz

) = (2πe2

q

)2

F 0
12(q)F

0
21(q)

[
R
(
q, kz

)+ S2
(
q, kz

)]
(10)

where matrix elementHλ
ij (q) is defined as

Hλ
ij (q) =

∫ di/2

−di/2
dt
∫ dj /2

−dj /2
dt ′e−q|t−t

′|ψλ
i (t
′)ψλ

i (t) (11)

t andt ′ vary over the width of an electron (hole) layer.Fλij (q) is given by (11) on replacing
q|t ′ − t ′| by q(t − t ′). Hλ

ij (q) andFλij (q) have been calculated using infinite potential well
wave functions as the envelope functions for both electron and hole layers in a unit cell.
It is to be mentioned that an infinitely deep potential well model does not properly take
into account certain effects such as those arising from charge transfer. However, it can be
used to calculate matrix elementsHλ

ij (q) andFλij (q) because the matrix elements are not so
sensitive to the choice of single-particle potential. The explicit values ofHλ

ij (q) andFλij (q)
are given in [34].S(q, kz) andR(q, kz) are defined by

S
(
q, kz

) = sinh(qd)

cosh(qd)− cos(kzd)
(12a)

R
(
q, kz

) = 1− cosh(qd)

cosh(qd)− cos(kzd)
. (12b)

Equation (3) has two terms on the right-hand side. Two brackets in the first term contain
the intralayer dielectric functions for Ga1−x InxAs and GaSb1−yAsy layers, respectively, of
a unit cell, while the second term yields the interlayer interaction between the collective
excitations in two layers of a unit cell. The effects of electron–electron interaction and hole–
hole interaction appear throughα0P 0

1e andβ0P 0
2h, respectively. (α0β0− γ 0)P 0

1eP
0
2h consists

of electron–hole interactions, for intrasubband transitions.α0(P 0
1e +P1i ) andβ0(P 0

2h+P2i )

contain plasmon–phonon coupling, while(α0β0−γ 0)P 0
1eP

0
2h and(α0β0−γ 0)P1iP2i involve

plasmon–plasmon and phonon–phonon couplings, respectively. On substituting (4)–(7), (3)
become a fourth-order equation inω2 and it has four roots which involve plasmon–phonon,
plasmon–plasmon and phonon–phonon coupling. The intralayer coupling yields two coupled
plasmon–phonon modes in each layer. We represent these four coupled modes by L1–L4.
In order to see separately the effect of plasmon–plasmon couplings in a simple manner,
we takeω → 0 limits of (6) and (7) to solve (3) for smallq at kzd → 0 andkzd → π .
kzd → 0 refers to the case of strong coupling among the layers, whilekzd → π refers
to the case of weak coupling among the layers. We obtain two roots of (3), which yield
frequencies of two coupled plasmon–plasmon modes.

ω+P (q, 0) =
[

4πe2

{
nse

ε1∞m∗1
+ nsh

ε2∞m∗2

}/{
ε10

ε2∞
d1+ ε20

ε2∞
d2

}]1/2

(13a)
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ω+P (q, π/d) =
{

2πe2nsed

m∗1ε1∞

}1/2

q (13b)

ω−P (q, 0) =
[(

2πe2nshd

ε2∞m∗2

)/(
1+ nshm

∗
1ε1∞

nsem
∗
2ε2∞

)]1/2

q (13c)

ω−P (q, π/d) =
(

2πe2nshd

m∗2ε2∞

)1/2

q (13d)

where ε1∞ and ε2∞ are static dielectric constants of Gax In1−xAs and GaSb1−yAsy ,
respectively. The plasmon–plasmon coupling provides a full band (ω−P ) for 2D acoustic
plasmons. It is obvious from (13a)–(13d) thatω±P (q, 0) depend on the intrinsic parameters
of both the layers of a unit cell, whileω+P (q, π/d) andω−P (q, π/d) depend on the intrinsic
parameters of Gax In1−xAs and GaSb1−xAsy , respectively. However, bothω±P (q, kz) depend
on (x, y) and d. ω+(q, π/d), ω−P (q, 0) andω−P (q, π/d) exhibit d1/2-dependence, while
ω+P (q, 0) showsd−1/2-dependence. The (x, y)-dependence has been taken into account
throughε1∞, ε2∞, m∗1 andm∗2 in the following simple manner:

ε1∞ = (1− x)ε∞(InAs)+ xε∞(GaAs) (14a)

ε2∞ = (1− y)ε∞(GaSb)+ yε∞(GaAs) (14b)

m∗1 = (1− x)m∗e (InAs)+ xm∗e (GaAs) (15a)

m∗2 = (1− y)m∗h(GaSb)+ ym∗h(GaAs) (15b)

ωL1 (ωL2) andωT 1 (ωT 2) also depend weakly on (x, y). We however treat them as
independent of (x, y) in our calculation. It has to be mentioned that (14) and (15) are valid
for small values ofx andy.

We computed L1–L4 coupled modes by modelling the Gax In1−xAs/GaSb1−yAsy
superlattice in terms of the following values of parameters [35–39]:ε∞(InAs) = 12.3,
ε∞(GaSb) = 14.4, ε∞(GaAs) = 10.9, m∗e (InAs) = 0.026me, m∗h(GaSb) = 0.3me,
m∗e (GaAs) = 0.07me, m∗h(GaAs) = 0.7me, ωT 1 = 26.91 meV, ωL1 = 29.53 meV,
ωT 2 = 28.22 meV, ωL2 = 30.14 meV, nSe ≡ nSh = 7 × 1011 cm−2. It has to be
mentioned that the Gax In1−xAs/GaAsySb1−y superlattice exhibits semimetal properties for
(x, y) 6 0.25 and it exhibits semiconductor properties for(x, y) > 0.25. Further,
the transition from semiconductor to semimetal phase also takes place on changingd.
For example the InAs/GaSb (x = y = 0) superlattice transforms from semimetal to
semiconductor phase ford 6 170 Å. Therefore, the transition from semiconductor to
semimetal phase or vice versa can be studied in our calculations by varying both (x, y)
andd. Our computed results show that the change in L3 and L4 on changing both (x, y)
and d is almost negligible. However, L1 and L2 exhibit a significant change with (x, y)
and with d. It is found that for changingx = y from 0 to 0.5 and keepingd = 420 Å
andq = 1.31× 105 cm−1, L1 roughly reduces by 17%, whereas L2 reduces by 23% for all
values of cos(kzd). ω

+
P (q, kz) andω−P (q, kz) are plotted as function ofx = y in figure 1

for qd1 = 0.265,qd2 = 0.2882 andkzd = 3.9513. Bothx andy are varied from 0 to 0.5.
At higher values ofx and y, the validity of (14) and (15) may become questionable and
also the type-II nature of Gax In1−xAs/GaSb1−yAsy may not hold. The figure shows that
ω±P (q, kz) decreases on increasingx and they are almost proportional to 1/

√
x. ω−P (q, kz)

is much softer thanω+P (q, kz). The effect of semiconductor to semimetal phase transition
(in terms of variation ofd) on ω±P (q, kz) at fixed values ofx and y can be understood
from (13a)–(13d). Further, on computingω±P (q, kz) as a function ofd for x = y = 0,
q = 1.31× 105 cm−1 and kz = 9.357× 105 cm−1 [35], we find thatω+P (q, 0) decreases
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Figure 1. Intrasubband electron and hole plasmon frequencies,ω+P (q, kz) (solid curve)
and ω−P (q, kz) (dashed curve) plotted as functions of (x, y) at q = 1.31 × 105 cm−1,
kz = 9.357× 105 cm−1 andd = 420 Å.

as 1/
√
d, while ω−P (q, 0) increases as

√
d, on increasingd, which is supported by (13). It

should be mentioned that the values of plasma frequencies are larger for the semiconductor
phase and are smaller for the semimetal phase of a type-II superlattice.

Our computed L1–L4 are plotted in figure 2 as functions ofqd atx = y = 0, d1 = 200Å
andd2 = 220Å for −16 cos(kzd) 6 1. The values of other parameters are taken to be the
same as those used above. The figure shows that L1 and L2 form bands of 2D plasmons.
The band of L2 is wider than that of L1. All the plasmon modes of L1 go to zero as linear
functions ofq, while in the case of band L2 the plasmon modes which are linear inq and
tend to zero asq → 0 appear for cos(kzd) not close to unity. The other modes go to a
constant value asq → 0. The figure also shows that the plasmons of L1 and L2 bands
increase on increasingqd. This suggests that, at a fixedd-value, plasma frequency increases
on increasingq.

We have also studied the effect of inhomogeneity in the dielectric background by
calculatingω−P andω+P for a homogeneous dielectric background of an electron (hole) gas.
It is noticed that the effect of inhomogeneity in the dielectric background is more prominent
in the ω−P band, while it is less significant in theω+P band. The effect of inhomogeneity
increases the value ofω+P and it decreases the value ofω−P , as can also be seen from
(13a)–(13d).

The solution of (3) with the use of theω → 0 limit of (4) and (5) yields two values
of ω (ω+Ph andω−Ph) which are coupled phonon–phonon modes. The computation ofω−Ph
and ω+Ph exhibits a weakq-dependence, for all possible values of cos(kzd). Also, ω−Ph
andω+Ph do not show any significant change on varyingx and y in the range of 0–0.5.
This suggests that phonon frequencies are more or less unaffected during semiconductor
to semimetal or vice versa phase transition. Our results show that the computed values of
ω+P , ω−P , ω+Ph andω−Ph are approximately equal to those of L1–L4, respectively. We further
noticed that the computed values ofω−Ph andω+Ph significantly differ from the values of
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Figure 2. The coupled intrasubband plasmon–phonon modes (L1–L4) and the coupled
intersubband plasmon–phonon modes (I1–I4) are plotted as functions ofqd, for d = 420 Å
and x = y = 0. The upper bound of L2–L4, I1 and I2 belongs to cos(kzd) = 1, whereas the
lower bound of I1 and I4 belongs to cos(kzd) = 1.

bulk phonon frequenciesωL1 and ωL2, respectively. We find thatωT 1 < ω−Ph < ωL1

andωT 2 < ω+Ph < ωL2. This suggests thatω+Ph andω−Ph represent the interface phonon
frequencies which are produced by the coupling between lattice vibrations of two adjoint
layers of different dielectric constants, in our model superlattice. Our findings are supported
by experimental measurement of phonon frequencies in InAs/GaSb superlattice [37]. L3

and L4 are also plotted as functions ofq in figure 2.

2.2. Intersubband plasmons

After neglecting the coupling between intrasubband and intersubband transitions, (1) takes
the following form for intersubband plasmons (λ = 1):∣∣ε1
(
q, ω, kz

)∣∣ = 1+ α1P 1
1e + α0P1i + β1P 1

2h + β0P2i + α1β1P 1
1eP

1
2h + α0β1P1iP

1
2h
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+α1β0P 1
1eP2i + α0β0P1iP2i − γ 1

(
P 1

2hP
1
1e + P 1

2hP1i + P2iP
1
1e

)
− γ 0P2iP1i

(16)

whereα1(q, kz), β1(q, kz) andγ 1(q, kz) are defined as

α1
(
q, kz

) = −(2πe2

q

){
H 1

11(q)− F 1
11(q)

[
1− S(q, kz)]} (17)

β1
(
q, kz

) = −(2πe2

q

){
H 1

22(q)− F 1
22(q)

[
1− S(q, kz)]} (18)

γ 1
(
q, kz

) = (2πe2

q

)2

F 1
12(q)F

1
21(q)

[
R
(
q, kz

)+ S2
(
q, kz

)]
. (19)

The explicit values of the matrix elementsH 1
11, H 1

22, F 1
11, F 1

22, F 1
12 andF 1

21 are defined
by (11) and these are evaluated in [34].P 1

1e andP 1
2h are given by

P 1
1e = −

2nseE10e

ε1∞[E2
10e − ω(ω + iγe)]

(20)

P 1
2h =

−2nshE10h

ε1∞[E2
10h − ω(ω + iγh)]

. (21)

S, R, P1i andP2i are defined earlier by (12a), (12b), (6) and (7), respectively.E10e

andE10h are the energy band gaps between the ground subband and the first subband for
electrons and holes, respectively.E10e andE10h can be calculated using an infinitely deep
potential well model for the electron and hole layers. We however found that the computed
values ofE10e using the infinitely deep potential well model show a large discrepancy in
comparison with experimentally measured values as a function ofd1 [35]. This suggests
that the calculatedE10e/h using an infinitely deep potential well model require modifications
to incorporate important effects, such as those arising from charge transfer in the self-
consistent single-particle potential. To remain simple, we modified the calculatedE10e/h

to the following empirical relation which fits well the experimentally measured values of
E10e/h:

E10e/h = Ae/h

de/h
+ Be/h
d2
e/h

. (22)

We estimateAe = 17.7514×103 meV Å−1, Be = 436.1082×103 meV Å−2, Ah = 5.2258×
103 meV Å−1 andBh = 37.796×103 meV Å−2 to fit the experimentally measured values of
E10e andE10h [35]. Similar to the case of (3), we notice that (16) involves plasmon–plasmon,
plasmon–phonon and phonon–phonon interactions. Equation (16) consists of coupling
among intersubband electron and hole plasmons, and the lattice vibrations of In1−xGaxAs
and GaAsySb1−y layers. The computed four roots of (16) are also plotted as functions of
q in figure 2. The coupled intersubband plasmon–phonon modes are represented by I1–I4.
We notice from figure 2 that the bands of I1, I2, L3 and L4 (which correspond to phonon
frequencies) overlap each other. The band of I3 overlaps the band of L4 for our choice of the
values of parameters. I3 and I4 approximately represent coupled plasmon–plasmon modes
for intersubband transitions, while I1 and I2 approximately represent the interface phonon
modes. The plasmon–plasmon coupled modes (ω1 andω2) for intersubband transitions are
given by the roots of (16) on taking static limit ofP1i and P2i , while phonon–phonon
coupled modes (ω3 andω4) are given by the two roots of (16) on substituting static limits
of P1

1e and P1
2h. It is to be noted here thatω3 andω4 slightly differ from ω−Ph andω+Ph

because of the different nature of electron (hole) transitions involved in the two cases. We
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computeω1–ω4 as functions ofd for q = 1.31× 105 cm−1, kz = 9.357× 105 cm−1 and
x = y = 0. ω1 andω2 show a strongd-dependence, whileω3 andω4 weakly depend ond.
ω1 andω2 are plotted as functions ofd in figure 3, for 100Å6 d 6 800 Å. For very small
values ofd (<100 Å or so) tunnelling between the layers, which is not considered in this
paper, may become important and significantly change our results. Similarly, for very large
values ofd (>800 Å or so) the modelling of an electron (hole) layer as a infinite potential
well may not be properly justified. The figure shows thatω1 andω2 decrease on increasing
d. ω1 exhibits relatively strongerd-dependence thanω2. The figure shows thatω1 andω2

decrease rather rapidly for 100̊A6 d 6 600 Å at given values ofq, kz and (x, y). It can
be seen from the figure that for larger values ofd1 andd2 intersubband plasma frequencies
reduce drastically and they even become comparable with intrasubband plasma frequencies.
Our computed values ofω1 show very good agreement with experimentally measured values
of ω1 for different values ofd1 [35]. The reported experimental values ofω1 are for the
InAs/AlSb superlattice, whereas our computedω1-values are for the InAs/GaSb superlattice.
The experimental values ofω1 vary in the range of 160–125 meV, whereas our computed
values vary from 146 to 111 meV, for 150̊A6 d1 6 200 Å at q = 1.31× 105 cm−1 and
kz = 9.357× 105 cm−1.

Figure 3. Intersubband plasma frequencies (ω1 and ω2) are plotted as functions ofd for
q = 1.31× 105 cm−1, kz = 9.357× 105 cm−1.

3. The line shapes of plasmon–phonon coupled modes

The lineshapes can be given by the imaginary part of dynamical polarizabilityχ(q, ω, z, z′)
which can be obtained by solving the integral equation [24]

χ(q, ω, z, z′) = P(q, ω, z, z′)+
∫ ∫

dz1 dz2V
(
q, ω, z1, z2

)
χ
(
q, ω, z2, z

′) (23)
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where P(q, ω, z, z′) is the polarizability in the absence of Coulomb electron–electron
interaction,V , which is given as

V (q, z, z′) =
(

2πe2

q

)
exp(−q|z− z′|). (24a)

For our model superlattice structure of type II,z can be taken as follows:

z = Id + Ri + t (24b)

whereI is the unit cell index whereasi is the layer index within a unit cell. Each unit cell
consists of two layers which are represented by two values ofi. The confinement of electrons
(holes) in a layer generates the subband structure. Both intrasubband and intersubband
transitions are possible between different subbands. For intrasubband transitions in the
ground subband and intersubband transition between the ground subband and the first excited
subband, we obtain [24, 34]

χλij (q, ω, I, I
′, t, t ′) = Pλij (q, ω, t, t ′)δII ′δij +

∑
I1

∑
j ′

∫ ∫
dt1 dt2Vij

(
q, I, I1, t, t1

)
Pλii
(
q, ω, t1, t

′
2

)
χλj ′j

(
q, ω, I1, I

′, t2, t ′
)

(25)

with

Vij (q, I, I
′, t, t ′) =

(
2πe2

q

)
exp

(−q|(I − I ′)d + Rij + (t − t ′)|) (26)

whereRij = Ri−Rj andPλii is the total (electronic and ionic) polarizability of theith layer.
The lineshapes of different coupled plasmon–phonon modes are given by [34]

L
(
q, kz, ω

) = −Im
[
χ0

11

(
q, ω, kz

)+ χ0
12

(
q, ω, kz

)+ χ0
21

(
q, ω, kz

)+ χ0
22

(
q, ω, kz

)
+χ1

11

(
q, ω, kz

)+ χ1
12

(
q, ω, kz

)+ χ1
21

(
q, ω, kz

)+ χ1
2

(
q, ω, kz

)]
(27)

whereχλij (q, kz) are obtained by Fourier transforming (25) with respect to the layer index.
Each term on the right-hand side of (27) is simplified in terms ofP 0

1e, P
0
2h, P 1

1e, P
1
2h, P1i

andP2i . We obtain

χ0
11 =

1

|ε0|
[
−
(
P 0

1e + P1i

)(
1− vq

(
P 0

2h + P 0
2i

)
L0

22

)
A0

11

]
(28)

χ1
11 =

1

|ε0|
[
−
(
P 1

1e + P1i

)(
1− vq

(
P 1

2h + P2i

)
L1

22

)
A1

11

]
(29)

χ0
12 =

1

|ε0|
[
−vq

(
P 0

1e + P1i

)
F 0

12w12

(
P 0

2h + P2i

)
A0

12

]
(30)

χ1
12 =

1

|ε1|
[
−vq

(
P 1

1e + P1i

)
F 1

12w12

(
P 1

2h + P2i

)
A1

12

]
(31)

χ0
12 =

1

|ε0|
[
−vq

(
P 0

2h + P2i

)
F 0

21w21

(
P 0

1e + P1i

)
A0

21

]
(32)

χ1
21 =

1

|ε1|
[
−vq

(
P 1

2h + P2i

)
F 1

21w21

(
P 1

1e + P1i

)
A1

21

]
(33)

χ0
22 =

1

|ε0|
[
−
(
P 0

2h + P2i

)(
1− vq

(
P 0

1e + P1i

)
L0

11

)
A0

22

]
(34)

χ1
22 =

1

|ε1|
[
−
(
P 1

2h + P2i

)(
1− vq

(
P 1

1e + P1i

)
L1

11

)
A1

22

]
(35)



Collective excitations for type-II superlattice 8051

Figure 4. A plot of −ImL(q, ω, kz) as a function ofω for d = 420Å, kz = 9.357×105 cm−1

andq = 1.31× 105 cm−1.

with

Aλij ≡ Anmij = |〈n| exp
(−ikzt

)|m〉|2 (36)

whereAλij can be obtained fromFλij on replacing (qdi) by ikzdi . Lλij are defined as

Lλij = Hλ
ij − Fλij

[
1− wij

(
q, kz

)]
(37)

where

wij
(
q, kz

) = [exp(−q|Rij |) exp(ikzd)

exp(ikzd)− exp(−qd) +
exp(q|Rij |) exp(−qd)

exp(−ikzd)− exp(−qd)
]
. (38)

P 0
1e, P

1
1e, P

0
2h, P 1

2h, P1i andP2i have been defined earlier.
Equation (27) describes the lineshapes for different coupled plasmon–phonon modes,

which appear in the scattered light spectrum of a superlattice of type II. The peak positions
of these lineshapes represent the frequencies of different coupled plasmon–phonon modes
originating from the interaction between intrasubband plasmons, intersubband plasmons
and the phonons. As is obvious from (27), our calculated values ofL(q, ω, kz) consists
of four components of polarizability, viz.χλ11, χλ12, χλ21 and χλ22, each of which has two
components. We have computedL(q, ω, kz) as a function ofω usingq = 1.31×105 cm−1,
kz = 9.357×105 cm−1, γe = 0.2, γh ≡ γph = 0.1 meV for two values ofd, i.e. d = 160 Å
(semiconductor phase) andd = 420 Å (semimetal phase) at different values of (x, y).
The values of other parameters have been taken as the same as used previously. Our
computed−ImL(q, ω, kz) for x = y = 0 andd = 420 Å are plotted in figure 4. The
figure demonstrates that the lineshapes of L1, I3, L2, I4, L4 and L3 are well resolved. The
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Figure 5. A plot of −ImL(q, ω, kz) as a function ofω for d = 160Å, kz = 9.357×105 cm−1

andq = 1.31× 105 cm−1.

lineshapes of I1 and I2 overlap with those of L3 and L4. The lineshapes at L1, I3, L2 and I4
have relatively larger peak height, whereas lineshapes of L4 and L3 have a small peak height.
The lineshapes of L3 and L4 are shown in the inset for clarity. All these lineshapes could
be observed in the light scattering experiments. Lineshapes of coupled plasmon–phonon
modes obtained for the semimetal phase are also calculated for homogeneous background
to compare our calculation for inhomogeneous background. No significant change due to
inhomogeneity in the background is observed.

The lineshapes for the semiconductor phase of a type-II superlattice (x = y = 0 and
d = 160 Å) are shown in figure 5. On comparing figures 4 and 5, we notice the following:
(i) there is an insignificant change in the peak positions and peak heights of L3, I1, L4 and
I2 modes on changingd from 420Å to 160 Å. (ii) The positions of L1 and L2 are shifted
towards lower energy values, while the positions of I3 and I4 modes are shifted to the higher
energy-side on decreasingd. (iii) The peak heights of L1 and L2 show a small change,
while the peak heights of I3 and I4 have been reduced drastically on decreasing the value
of d from 420 to 160Å. Our computed lineshapes of L3 and L4 qualitatively agree with
the experimentally measured phonon lineshape in the InAs/GaSb superlattice [37]. Also,
our computed lineshape of I4 shows good qualitative agreement with the experimentally
measured lineshape of the intersubband electron plasma in the InAs/AlSb superlattice [35].
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4. Conclusion

We have performed a model calculation of the dielectric function and density–density
correlation function for a compositional type-II Gax In1−xAs/GaAsySb1−y superlattice by
taking into account the difference in dielectric background of electron and hole gas and the
finite width of an electron (hole) layer. Our calculation consists of 12 possible interaction
terms and it is a more accurate analysis than those performed in the past.ω±P , ω1 andω2

exhibit a strong dependence on (x, y), d and the inhomogeneity in the dielectric background,
whereasω±ph, ω3 andω4 show insignificant change on varying (x, y) andd. Our computed
ω±ph, ω3 andω4 are closer to interface phonon modes than LO bulk phonon modes.ω+P
andω0

1 depend on the intrinsic parameters of both layers in a unit cell, whereasω−P and
ω2 depend on the intrinsic parameters of GaSb1−yAsy only. The lineshapes of L1, L2, I3,
I4, L4 and L3 are well resolved. The lineshapes of I1 and I2 overlap with those of L4 and
L3. Also, the lineshapes of L1, I3, L2 and I4 have a reasonably large peak height and half
width which can be measured experimentally. The lineshapes of L3, I1, L4 and I2 show
insignificant change on changingd, while the positions of L1 and L2 shift towards lower
energy and the positions of I3 and I4 shift towards the higher-energy side on decreasingd.
The peak heights of L1 and L2 show a small change, while the peak heights of I3 and I4
reduce drastically on decreasingd from 420 to 160Å.
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